These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene.
    Author: Yu W, Pirollo KF, Rait A, Yu B, Xiang LM, Huang WQ, Zhou Q, Ertem G, Chang EH.
    Journal: Gene Ther; 2004 Oct; 11(19):1434-40. PubMed ID: 15229629.
    Abstract:
    A sterically stabilized immunolipoplex (TsPLP), containing an antitransferrin receptor single-chain antibody fragment (TfRscFv)-PEG molecule, has been developed to specifically and efficiently deliver a therapeutic gene to tumor cells. A postcoating preparation strategy was employed in which a DNA/lipid complex (lipoplex) was formed first and then sequentially conjugated with PEG and TfRscFv. The complex prepared by this method was shown to be superior in ability to deliver genes to tumor cells than when prepared by a common precoating strategy, in which DNA is mixed with TfRscFv-PEG conjugated liposome. Using prostate cancer cell line DU145, a comparison was made between the in vitro and in vivo gene delivery efficiencies of four complexes, Lipoplex (LP), PEG-Lipoplex (PLP), TfRscFv-PEG-Lipoplex (TsPLP) and our standard TfRscFv-Lipoplex (TsLP). In vitro, the order of transfection efficiency was TsLP>LP approximately TsPLP>PLP. However, in vivo the order of transfection efficiency, after systemic administration via the tail vein, was TsPLP>TsLP>LP or PLP with TsPLP-mediated exogenous gene expression in tumor being two-fold higher than when mediated by TsLP. This suggests that the in vitro transfection efficiency of TsPLP was not indicative of its in vivo efficiency. In addition, it was found that the level of exogenous gene expression in the tumor mediated by TsPLP was higher than that mediated by TsLP and did not decrease over the time. More importantly, high exogenous gene expression in tumor, but low expression in liver, was observed after an i.v. delivery of TsPLP carrying either the GFP reporter gene or the p53 gene, indicating that tumor preferential targeting was maintained by this complex in the presence of PEG. These findings show that incorporation of PEG into our targeted lipoplex results in a more efficient delivery of the complex to the tumor cells, possibly by inhibiting the first pass clearance observed with non-PEG containing liposomes. Therefore, these data demonstrate that TsPLP is a improvement over our previously established tumor targeted gene delivery complex for systemic gene therapy of cancer.
    [Abstract] [Full Text] [Related] [New Search]