These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Topographic effects on adhesive force mapping of stretched DNA molecules by pulsed-force-mode atomic force microscopy.
    Author: Kwak KJ, Sato F, Kudo H, Yoda S, Fujihira M.
    Journal: Ultramicroscopy; 2004 Aug; 100(3-4):179-86. PubMed ID: 15231308.
    Abstract:
    Adhesive interaction between a tip and a sample surface was examined on a microscopic scale by pulsed-force-mode atomic force microscopy (PFM-AFM). The signal measured by monitoring pull-off force is influenced by various factors such as topography, elasticity, electrostatic charges, and adsorbed water on surfaces. Here, we focus on the topographic effects on the adhesive interaction. To clarify the topographic influence, the adhesive force measurement of a stretched DNA molecule with a smaller radius of curvature than that of a tip was carried out at low relative humidity (RH) with an alkanethiol-modified tip. The experimental conditions such as low RH and the use of the alkanethiol-modified tip were required to minimise the influence of water capillary force on hydrated DNA strands. The hydrophobic modification of a substrate surface was also important to minimise the adsorbed water effect. The DNA molecules were stretched on the substrate surfaces by an immobilisation process called a dynamic molecular combing method. The two-component vapour-phase surface modification with an alkylsilane mixed with a silane derivative containing an amino end group enhanced the DNA adsorption due to the electrostatic interaction. The experimental results for the topographic effects on the adhesive force mapping were reproducible.
    [Abstract] [Full Text] [Related] [New Search]