These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The dg2 (for) gene confers a renal phenotype in Drosophila by modulation of cGMP-specific phosphodiesterase.
    Author: MacPherson MR, Broderick KE, Graham S, Day JP, Houslay MD, Dow JA, Davies SA.
    Journal: J Exp Biol; 2004 Jul; 207(Pt 16):2769-76. PubMed ID: 15235005.
    Abstract:
    Fluid transport in Drosophila melanogaster tubules is regulated by guanosine 3',5'-cyclic monophosphate (cGMP) signalling. Here we compare the functional effects on tubules of different alleles of the dg2 (foraging or for) gene encoding a cGMP-dependent protein kinase (cGK), and show that the fors allele confers an epithelial phenotype. This manifests itself as hypersensitivity of epithelial fluid transport to the nitridergic neuropeptide, capa-1, which acts through nitric oxide and cGMP. However, there was no significant difference in tubule cGK activity between fors and forR adults. Nonetheless, fors tubules contained higher levels of cGMP-specific phosphodiesterase (cG-PDE) activity compared to forR. This increase in cGMP-PDE activity sufficed to decrease cGMP content in fors tubules compared to forR. Challenge of tubules with capa-1 increases cGMP content in both fors and forR tubules, although the increase from resting cGMP levels is greater in fors tubules. Capa-1 stimulation of tubules reveals a potent inhibition of cG-PDE in both lines, although this is greater in fors; and is sufficient to explain the hypersensitive transport phenotype observed. Thus, polymorphisms at the dg2 locus do indeed confer a cGMP-dependent transport phenotype, but this can best be ascribed to an indirect modulation of cG-PDE activity, and thence cGMP homeostasis, rather than a direct effect on cGK levels.
    [Abstract] [Full Text] [Related] [New Search]