These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hypergravity from conception to adult stage: effects on contractile properties and skeletal muscle phenotype. Author: Bozzo C, Stevens L, Bouet V, Montel V, Picquet F, Falempin M, Lacour M, Mounier Y. Journal: J Exp Biol; 2004 Jul; 207(Pt 16):2793-802. PubMed ID: 15235008. Abstract: This study examined the effects of an elevation of the gravity factor (hypergravity--2 g) on the molecular and functional characteristics of rat soleus and plantaris muscles. Long Evans rats were conceived, born and reared (CBR) continuously in hypergravity conditions until the age of 100 days. Whole muscle morphological parameters, Ca2+ activation characteristics from single skinned fibers, troponin (Tn) subunit and myosin heavy (MHC) and light (MLC) chains isoform compositions were examined in CBR and control muscles from age-paired terrestrial rats. Decreases in body and muscle mass in soleus and plantaris muscles were observed and associated, in the soleus, with a decrease in fiber diameter. The specific force of CBR soleus fibers was increased, and correlated with the elevation of Ca2+ affinity. This was accompanied by slow-to-slower TnC and TnI isoform transitions and a rearrangement in TnT fast isoform content. The MHC transformations of the soleus after hypergravity were associated with the up (down)-regulation of the MHCI (MHCIIa) mRNA isoforms. The MLC2 phosphorylation state remained unchanged in the soleus muscle. The results suggested that the gravity factor could interact with rat muscle development and that hypergravity experiments could provide good tools for the study of myofibrillar protein plasticity and their associated pathways of regulation.[Abstract] [Full Text] [Related] [New Search]