These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mass spectrometry and partial least-squares regression: a tool for identification of wheat variety and end-use quality. Author: Sørensen HA, Petersen MK, Jacobsen S, Søndergaard I. Journal: J Mass Spectrom; 2004 Jun; 39(6):607-12. PubMed ID: 15236298. Abstract: Rapid methods for the identification of wheat varieties and their end-use quality have been developed. The methods combine the analysis of wheat protein extracts by mass spectrometry with partial least-squares regression in order to predict the variety or end-use quality of unknown wheat samples. The whole process takes approximately 30 min. Extracts of alcohol-soluble storage proteins (gliadins) from wheat were analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Partial least-squares regression was subsequently applied using these mass spectra for making models that could predict the wheat variety or end-use quality. Previously, an artificial neural network was used to identify wheat varieties based on their protein mass spectra profiles. The present study showed that partial least-squares regression is at least as useful as neural networks for this identification. Furthermore, it was demonstrated that partial least-squares regression could be used to predict wheat end-use quality, which has not been possible using neural networks.[Abstract] [Full Text] [Related] [New Search]