These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Respiratory symptoms and peak expiratory flow rates among furniture-decoration students.
    Author: Arbak P, Bilgin C, Balbay O, Yeşildal N, Annakkaya AN, Ulger F.
    Journal: Ann Agric Environ Med; 2004; 11(1):13-7. PubMed ID: 15236493.
    Abstract:
    This study was designed to evaluate the effects of furniture production, mainly including fir tree (aberia mulleriana), on respiratory health of young workers and to compare the results with those obtained from previous studies. Sixty-four furniture-decoration students (57 males and 7 females) and 62 controls (54 male, 8 female) from different departments in the same school were included into the study. All participants were assessed with a questionnaire (concerning history of occupational exposure, work-related respiratory and other symptoms, smoking history, previous asthma history), full physical examination, spirometric evaluation and chest radiograph. Participants then performed serial monitoring of peak expiratory flow rates (PEFR) at work and away from work within a month. Mean age of students was 20.9 +/- 3.7 years, 20.5 +/- 2.6 years in controls. There was no difference between study and control groups with regard to age, gender, smoking status and previous asthma history. Reported cough (23.4 % vs. 8.1 %) and shortness of breath (18.8 % vs. 6.5 %) were significantly higher in furniture-decoration students than in controls (p = 0.016 and p = 0.034, respectively). Furniture-decoration students had higher conjunctivitis (34.4 % vs. 9.7 %, p = 0.001) and rhinitis (34.4 % vs. 19.4 %, p = 0.044) history when compared with controls. Both students and controls were normal in terms of respiratory examination. PEF recordings were performed for approximately one month. Diurnal variability greater than 20 % was seen in 12/64 (18.7 %) of students at work, whereas it was detected in 4/62 (6.4 %) of controls (p = 0.034). When comparing for the presence of diurnal variability greater than 20 % in weekends, no difference was found between groups (p = 0.457). In conclusion, early detection of work-related respiratory changes by serial monitoring of peak expiratory flows should save the workers from hazardous respiratory effects of the furniture production, especially in young population.
    [Abstract] [Full Text] [Related] [New Search]