These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coenzyme site-directed mutants of photosynthetic A4-GAPDH show selectively reduced NADPH-dependent catalysis, similar to regulatory AB-GAPDH inhibited by oxidized thioredoxin.
    Author: Sparla F, Fermani S, Falini G, Zaffagnini M, Ripamonti A, Sabatino P, Pupillo P, Trost P.
    Journal: J Mol Biol; 2004 Jul 23; 340(5):1025-37. PubMed ID: 15236965.
    Abstract:
    Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of higher plants uses both NADP(H) and NAD(H) as coenzyme and consists of one (GapA) or two types of subunits (GapA, GapB). AB-GAPDH is regulated in vivo through the action of thioredoxin and metabolites, showing higher kinetic preference for NADPH in the light than in darkness due to a specific effect on kcat(NADPH). Previous crystallographic studies on spinach chloroplast A4-GAPDH complexed with NADP or NAD showed that residues Thr33 and Ser188 are involved in NADP over NAD selectivity by interacting with the 2'-phosphate group of NADP. This suggested a possible involvement of these residues in the regulatory mechanism. Mutants of recombinant spinach GapA (A4-GAPDH) with Thr33 or Ser188 replaced by Ala (T33A, S188A and double mutant T33A/S188A) were produced, expressed in Escherichia coli, and compared to wild-type recombinant A4-GAPDH, in terms of crystal structures and kinetic properties. Affinity for NADPH was decreased significantly in all mutants, and kcat(NADPH) was lowered in mutants carrying the substitution of Ser188. NADH-dependent activity was unaffected. The decrease of kcat/Km of the NADPH-dependent reaction in Ser188 mutants resembles the behaviour of AB-GAPDH inhibited by oxidized thioredoxin, as confirmed by steady-state kinetic analysis of native enzyme. A significant expansion of size of the A4-tetramer was observed in the S188A mutant compared to wild-type A4. We conclude that in the absence of interactions between Ser188 and the 2'-phosphate group of NADP, the enzyme structure relaxes to a less compact conformation, which negatively affects the complex catalytic cycle of GADPH. A model based on this concept might be developed to explain the in vivo light-regulation of the GAPDH.
    [Abstract] [Full Text] [Related] [New Search]