These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Polymerization and gelation of whey protein isolates at low pH using transglutaminase enzyme.
    Author: Eissa AS, Bisram S, Khan SA.
    Journal: J Agric Food Chem; 2004 Jul 14; 52(14):4456-64. PubMed ID: 15237952.
    Abstract:
    Dynamic and steady shear rheology is used to examine the synthesis of low-pH (approximately 4) whey protein gels obtained through a two-step process. The first step involves cross-linking of whey proteins at pH 8 and 50 degrees C using transglutaminase enzyme, while the second step entails cold-set acidification of the resulting solution using glucono-delta-lactone (GDL) acid. During the first step, the sample undergoes enzyme-catalyzed epsilon-(gamma-glutamyl)lysine bond formation with a substantial increase in viscosity. Acidification in the second step using GDL acid leads to a rapid decrease in pH with a concomitant increase in the elastic (G') and viscous (G' ') moduli and formation of a gelled network. We examine the large strain behavior of the gel samples using a relatively new approach that entails plotting the product of elastic modulus and strain (G'gamma) as a function of increasing dynamic strain and looking for a maximum, which corresponds to the yield or fracture point. We find the enzyme-catalyzed gels to have significantly higher yield/fracture stress and strain compared to cold-set gels prepared without enzyme or conventional heat-set gels. In addition, the elastic modulus of the enzyme-catalyzed gel is also higher than its non-enzyme-treated counterpart. These results are discussed in terms of the gel microstructure and the role played by the enzyme-induced cross-links.
    [Abstract] [Full Text] [Related] [New Search]