These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytochrome P450CAM enzymatic catalysis cycle: a quantum mechanics/molecular mechanics study. Author: Guallar V, Friesner RA. Journal: J Am Chem Soc; 2004 Jul 14; 126(27):8501-8. PubMed ID: 15238007. Abstract: The catalytic pathway of cytochrome P450cam is studied by means of a hybrid quantum mechanics/molecular mechanics method. Our results reveal an active role of the enzyme in the different catalytic steps. The protein initially controls the energy gap between the high- and low-spin states in the substrate binding process, allowing thermodynamic reduction by putidaredoxin reductase and molecular oxygen addition. A second electron reduction activates the delivery of protons to the active site through a selective interaction of Thr252 and the distal oxygen causing the O--O cleavage. Finally, the protein environment catalyzes the substrate hydrogen atom abstraction step with a remarkably low free energy barrier ( approximately 8 kcal/mol). Our results are consistent with the effect of mutations on the enzymatic efficacy and provide a satisfactory explanation for the experimental failure to trap the proposed catalytically competent species, a ferryl Fe(IV) heme.[Abstract] [Full Text] [Related] [New Search]