These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse reflectance spectroscopy (600-1100 nm). Author: Lin M, Al-Holy M, Mousavi-Hesary M, Al-Qadiri H, Cavinato AG, Rasco BA. Journal: Lett Appl Microbiol; 2004; 39(2):148-55. PubMed ID: 15242453. Abstract: AIMS: To evaluate the feasibility of visible and short-wavelength near-infrared (SW-NIR) diffuse reflectance spectroscopy (600-1100 nm) to quantify the microbial loads in chicken meat and to develop a rapid methodology for monitoring the onset of spoilage. METHODS AND RESULTS: Twenty-four prepackaged fresh chicken breast muscle samples were prepared and stored at 21 degrees C for 24 h. Visible and SW-NIR was used to detect and quantify the microbial loads in chicken breast muscle at time intervals of 0, 2, 4, 6, 8, 10, 12 and 24 h. Spectra were collected in the diffuse reflectance mode (600-1100 nm). Total aerobic plate count (APC) of each sample was determined by the spread plate method at 32 degrees C for 48 h. Principal component analysis (PCA) and partial least squares (PLS) based prediction models were developed. PCA analysis showed clear segregation of samples held 8 h or longer compared with 0-h control. An optimum PLS model required eight latent variables for chicken muscle (R = 0.91, SEP = 0.48 log CFU g(-1)). CONCLUSIONS: Visible and SW-NIR combined with PCA is capable of perceiving the change of the microbial loads in chicken muscle once the APC increases slightly above 1 log cycle. Accurate quantification of the bacterial loads in chicken muscle can be calculated from the PLS-based prediction method. SIGNIFICANCE AND THE IMPACT OF THE STUDY: Visible and SW-NIR spectroscopy is a technique with a considerable potential for monitoring food safety and food spoilage. Visible and SW-NIR can acquire a metabolic snapshot and quantify the microbial loads of food samples rapidly, accurately, and noninvasively. This method would allow for more expeditious applications of quality control in food industries.[Abstract] [Full Text] [Related] [New Search]