These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A new role for BMP5 during limb development acting through the synergic activation of Smad and MAPK pathways.
    Author: Zuzarte-Luís V, Montero JA, Rodriguez-León J, Merino R, Rodríguez-Rey JC, Hurlé JM.
    Journal: Dev Biol; 2004 Aug 01; 272(1):39-52. PubMed ID: 15242789.
    Abstract:
    In an attempt to identify new genes implicated in the control of programmed cell death during limb development, we have generated a cDNA library from the regressing interdigital tissue of chicken embryos. We have analyzed 804 sequences from this library and identified 23 genes involved in apoptosis in different models. One of the genes that came up in the screening was the Bone Morphogenetic Protein family member, Bmp5, that has not been previously involved in the control of apoptosis during limb development. In agreement with a possible role in the control of cell death, Bmp5 exhibited a regulated pattern of expression in the interdigital tissue. Transcripts of Bmp5 and BMP5 protein were abundant within the cytoplasm of the fragmenting apoptotic interdigital cells in a way suggesting that delivery of BMPs into the tissue is potentiated during apoptosis. Gain-of-function experiments demonstrated that BMP5 has the same effect as other interdigital BMPs inducing apoptosis in the undifferentiated mesoderm and growth in the prechondrogenic mesenchyme. We have characterized both Smad proteins and MAPK p38 as intracellular effectors for the action of BMPs in the developing limb autopod. Activation of Smad signaling involves the receptor-regulated genes Smad1 and -8, and the inhibitory Smad6, and results in both the upregulation of gene transcription and protein phosphorylation with subsequent nuclear translocation. MAPK p38 is also quickly phosphorylated after BMP stimulation in the limb mesoderm. Treatment with the inhibitor of p38, SB203580, revealed that there are interdigital genes induced by BMPs in a p38-dependent manner (DKK, Snail and FGFr3), and genes induced in a p38-independent manner (BAMBI, Msx2 and Smads). Together, our results suggest that Smad and MAPK pathways act synergistically in the BMP pathway controlling limb development.
    [Abstract] [Full Text] [Related] [New Search]