These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation and induction of cyclic AMP phosphodiesterase (PDE4) in rat pulmonary microvascular endothelial cells.
    Author: Zhu B, Kelly J, Vemavarapu L, Thompson WJ, Strada SJ.
    Journal: Biochem Pharmacol; 2004 Aug 01; 68(3):479-91. PubMed ID: 15242814.
    Abstract:
    Regulation of the rolipram-sensitive cAMP-specific phosphodiesterase 4 (PDE4) gene family was studied in rat pulmonary microvascular endothelial cells (RPMVECs). Total PDE4 hydrolysis was increased within 10 min after addition of forskolin (10 microM), reached a maximum at 20-40 min, and then gradually declined in the cells. A similar activation of PDE4 activity was observed using a protein kinase A (PKA) activator, N(6)-monobutyryl cAMP. Both the forskolin and the N(6)-monobutyryl cAMP activated PDE4 activities were blocked by the PKA-specific inhibitor, H89. This forskolin-stimulated and PKA-mediated short-term activation of PDE4 activity was further confirmed by in vitro phosphorylation of 87kDa PDE4A6 and 83kDa PDE4B3 polypeptides using exogenous PKA Calpha. Increased immunoreactivity of phosphorylated PDE4A6 in situ was detected in Western blots by a PDE4A-phospho antibody specific to the putative PKA phosphorylation sites. Following long-term treatment of RPMVECs with rolipram and forskolin medium (RFM) for more than 60 days, PDE4 activity reached ten-fold higher values than control RPMVECS with twenty-fold increases detected in intracellular cAMP content. The RFM cells showed increased immunoreactivities of the constitutive 4A6 and 4B3 isoforms plus two novel splice variants at 101kDa (4B1) and 71kDa (4B2). Treatment with H89 did not inhibit the PDE4 elevation in RFM cells. In addition to the increased levels of PDE4 in RFM cells, immunofluorescence showed a translocation of PDE4A and 4B to a nuclear region, which was normally not observed in RPMVECs. The PDE4 activity in RFM cells decayed rapidly with an even faster decline of intracellular cAMP content when forskolin/rolipram were removed from the medium. These results suggest that both the activation (short-term) and induction (long-term) of PDE4A/4B isoforms in RPMVECs are closely modulated by the intracellular cAMP content via both post-translational and synthetic mechanisms.
    [Abstract] [Full Text] [Related] [New Search]