These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of intracellular magnesium on Kv1.5 and Kv2.1 potassium channels. Author: Tammaro P, Smirnov SV, Moran O. Journal: Eur Biophys J; 2005 Feb; 34(1):42-51. PubMed ID: 15243721. Abstract: We characterized the effects of intracellular Mg(2+) (Mg(2+) (i)) on potassium currents mediated by the Kv1.5 and Kv2.1 channels expressed in Xenopus oocytes. Increase in Mg(2+) (i) caused a voltage-dependent block of the current amplitude, apparent acceleration of the current kinetics (explained by a corresponding shift in the steady-state activation) and leftward shifts in activation and inactivation dependencies for both channels. The voltage-dependent block was more potent for Kv2.1 [dissociation constant at 0 mV, K(d)(0), was approximately 70 mM and the electric distance of the Mg(2+) binding site, delta, was 0.2] than for the Kv1.5 channel [K(d)(0) approximately 40 mM and delta = 0.1]. Similar shifts in the voltage-dependent parameters for both channels were described by the Gouy-Chapman formalism with the negative charge density of 1 e(-)/100 A(2). Additionally, Mg(2+) (i) selectively reduced a non-inactivating current and increased the accumulation of inactivation of the Kv1.5, but not the Kv2.1 channel. A potential functional role of the differential effects of Mg(2+) (i) on the Kv channels is discussed.[Abstract] [Full Text] [Related] [New Search]