These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reductive dechlorination of tetrachloroethene by a mixed bacterial culture growing on ethyl lactate.
    Author: Jayaraj J, Rockne KJ, Makkar RS.
    Journal: J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(6):1399-414. PubMed ID: 15244324.
    Abstract:
    Chloroethenes like tetrachloroethene (PCE) are the most prevalent groundwater contaminants in the USA. Their presence as nonaqueous phase liquids (NAPLs) makes remediation difficult. Among options for NAPL cleanup, co-solvent injection has demonstrated success. However, the process has the potential to leave considerable residue of the co-solvent as well as residual chloroethene. Our rationale in this study was to examine whether this residual solvent could be a potential electron donor for the remediation of the residual chloroethene. We hypothesized that ethyl lactate, a "green" solvent, could serve both as a NAPL extraction solvent and an electron donor for reductive dechlorination of residual chloroethene. We examined whether a mixed culture known to degrade PCE with lactate could also grow on ethyl lactate and whether it could stimulate PCE dechlorination. Biomass growth and PCE dechlorination were observed by protein and chloride production, respectively, in the culture; with a specific dechlorination rate of 50 150 microg (mg cell d)(-1). Ethyl lactate abiotically breaks down to ethanol and lactate, the latter being a rich source of hydrogen fo reductive dechlorination. The results demonstrate that ethyl lactate may be promising for in situ bioremediation following NAPL extraction.
    [Abstract] [Full Text] [Related] [New Search]