These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Author: Gröndahl M, Eriksson L, Gatenholm P. Journal: Biomacromolecules; 2004; 5(4):1528-35. PubMed ID: 15244474. Abstract: Free films based on glucuronoxylan isolated from aspen wood were prepared by casting from aqueous solutions and drying in a controlled environment. Addition of xylitol or sorbitol facilitated film formation and thus examination of the material properties of these films. The mechanical properties of the films were evaluated using tensile testing and dynamic mechanical analysis in a controlled ambient relative humidity. The strain at break increased, and the stress at break and Young's modulus of the films decreased with increasing amounts of xylitol and sorbitol due to plasticization. At high amount of plasticizer, it was found that films with xylitol gave lower extensibility. Wide-angle X-ray scattering analysis showed that xylitol crystallized in a distinct phase, which we believe contributes to the more brittle behavior of these films. The effect of the plasticizers on the glass transition temperature was determined using dynamic mechanical analysis and differential scanning calorimetry. An increased amount of plasticizer shifted the glass transition to lower temperatures. The effect of moisture on the properties of plasticized films was investigated using water vapor sorption isotherms and by humidity scans in dynamic mechanical analysis. Sorption isotherms showed a transition from type II to type III when adding plasticizer. The films showed low oxygen permeability and thus have a potential application in food packaging.[Abstract] [Full Text] [Related] [New Search]