These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Both d- and l-glutamate induce transporter-mediated presynaptic autoinhibition of transmitter release.
    Author: Dudel J.
    Journal: Eur J Neurosci; 2004 Jul; 20(1):161-6. PubMed ID: 15245488.
    Abstract:
    In crayfish motor nerve terminals l-glutamate (Glu) is the excitatory transmitter and low l-Glu concentrations exert autoinhibition by inhibiting release of Glu quanta from the terminals. This autoinhibition has been shown to be mediated by binding and transport of l-Glu by Glu transporters in the presynaptic membrane. Activated transporters open an associated Cl(-) channel and inhibit release [J. Dudel & M. Schramm (2003) Eur. J. Neurosci., 18, 902-910]. The excitatory, glutamatergic synaptic transmission is specific for the l-Glu isomer. However, transporters are non-selective for the stereoisomers. It is shown here that low concentrations (5 micro m) of d- as well as l-Glu inhibit quantal release on average to 55 and 68%, respectively. The power of inhibition varies widely at different terminals but the local sensitivity to d-Glu is seen to be the same as that for l-Glu. l-Glutamate has been reported to reduce the mean amplitude of nerve terminal action currents (excitatory nerve terminal currents) by about 10%, presumably due to the opening of Cl(-) channels. Evidence is given that d-Glu also inhibits this by an average of 10% (P < 0.001), as expected if both l- and d-Glu activate a transporter-associated Cl(-) conductance. The results give further support for this novel mechanism of regulation of synaptic strength.
    [Abstract] [Full Text] [Related] [New Search]