These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Determination of choline and ethanolamine plasmalogens in human plasma by HPLC using radioactive triiodide (1-) ion (125I3-). Author: Maeba R, Ueta N. Journal: Anal Biochem; 2004 Aug 01; 331(1):169-76. PubMed ID: 15246010. Abstract: For the purpose of developing highly sensitive and convenient determination of plasmalogens, the high-performance liquid chromatography (HPLC) method using radioactive iodine ((125)I) was investigated. Radioactive triiodide (1-) ion ((125)I(3)(-)), which is an actual iodine form capable of reacting with vinyl ether bond ([bond]CH(2)[bond]O[bond]CH[double bond]CH[bond]) of plasmalogens, could be safely and efficiently produced by oxidizing a commercial radioactive sodium iodine (Na(125)I) with hydrogen peroxide (H(2)O(2)) under acid condition (pH 5.5-6.0), which is called iodine-125 reagent. I(3)(-) specifically reacted with plasmalogens at the molar ratio of 1:1 in methanol, and 1 or 2 mol of plasmalogens was involved in the binding with iodine per iodine atom, resulting in the formation of stable iodine-binding phospholipids. The HPLC system with Diol column and acetonitrile/water as a mobile phase was available for separating iodine-binding phospholipids from nonbinding free iodine and for separately eluting iodine-binding phospholipids derived from choline and ethanolamine plasmalogens. Using iodine-125 reagent (1.85 MBq/ml), plasmalogens were detectable at high sensitivity of 10,000-15,000 cpm/nmol, which is more than 1000-fold higher sensitivity than the classical determination with nonradioactive iodine. Plasmalogen concentrations in human plasma were measured with the HPLC system and determined as, on average, 129.1+/-31.3 microM (n=8) in a 1.2 content ratio of choline to ethanolamine plasmalogens, a concentration that nearly agrees with the value reported previously.[Abstract] [Full Text] [Related] [New Search]