These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro activity of tigecycline (GAR-936) tested against 11,859 recent clinical isolates associated with community-acquired respiratory tract and gram-positive cutaneous infections. Author: Fritsche TR, Kirby JT, Jones RN. Journal: Diagn Microbiol Infect Dis; 2004 Jul; 49(3):201-9. PubMed ID: 15246511. Abstract: Tigecycline is a novel 9-t-butylglycylamido derivative of minocycline that has demonstrated activity against a variety of bacterial pathogens, including resistant isolates, during preclinical studies. In vitro activities of tigecycline and comparators were tested against 11,859 recent (2000 and 2002) bacterial strains recovered from patients in 29 countries with community-acquired respiratory tract disease (3,317 gram-positive and -negative strains) and skin and soft tissue infections (8,542 gram-positive strains). All oxacillin-susceptible and -resistant Staphylococcus aureus (5,077 strains; tigecycline MIC(90), 0.5 microg/mL) and coagulase-negative staphylococci (1,432 strains; MIC(90), 0.5 microg/mL), penicillin-susceptible and -resistant Streptococcus pneumoniae (1,585 strains; MIC(90), < or =0.25 microg/mL), viridans group streptococci (212 strains; MIC(90), < or =0.25-0.5 microg/mL), vancomycin-susceptible and -resistant enterococci (1,416 strains; MIC(90), 0.25-0.5 microg/mL), beta-haemolytic streptococci (405 strains; MIC(90), < or =0.25 microg/mL), beta-lactamase positive and negative Haemophilus influenzae (1,220 strains; MIC(90), 1 microg/mL), Moraxella catarrhalis (495 strains; MIC(90), 0.25 microg/mL), and Neisseria meningitidis (17 strains; MIC(90), < or =0.12 microg/mL) were inhibited by 2 microg/mL or less of tigecycline. Whereas potency of tetracycline and doxycycline markedly dropped in various resistant organism subsets, tigecycline was unaffected with an overall MIC(90) of 0.5 microg/mL. These findings confirm that tigecycline maintains a truly broad spectrum like the tetracycline class while enhancing potency. It also incorporates stability to the commonly occurring tetracycline resistance mechanisms, making it an attractive candidate for continued clinical development against pathogens causing serious community-acquired respiratory tract infections, as well as cutaneous infections.[Abstract] [Full Text] [Related] [New Search]