These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential regulation of telomerase in endothelial cells by fibroblast growth factor-2 and vascular endothelial growth factor-a: association with replicative life span. Author: Trivier E, Kurz DJ, Hong Y, Huang HL, Erusalimsky JD. Journal: Ann N Y Acad Sci; 2004 Jun; 1019():111-5. PubMed ID: 15247002. Abstract: In cultured human umbilical vein endothelial cells (HUVECs), fibroblast growth factor-2 (FGF-2), but not vascular endothelial growth factor-A (VEGF-A), upregulates telomerase activity. Here, we examined the functional significance of this differential regulation on the replicative life span of HUVECs. HUVECs were serially passaged until senescence under four different conditions: (1) EGM-2, a medium containing both VEGF-A and FGF-2; (2) basal medium (BM), consisting of EGM-2 devoid of FGF-2 and VEGF-A; (3) BM supplemented with FGF-2; and (4) BM supplemented with VEGF-A. Cells cultured in BM demonstrated decreased growth rate and ceased to proliferate at approximately 15 population doublings (PDs), whereas those cultured with VEGF-A alone initially proliferated vigorously but arrested growth abruptly at a PD level comparable with cultures grown in BM. In contrast, cells maintained in EGM-2 or in BM/FGF-2 attained a normal replicative life span (approximately 40 PDs). These differences in replicative behavior were reflected by the early appearance of a senescent phenotype in cultures grown in BM or BM/VEGF-A. HUVECs grown in the presence of VEGF-A alone have a decreased life span compared with cultures maintained with FGF-2. This suggests that the upregulation of telomerase activity by FGF-2, an effect not achieved with VEGF-A, plays a functional role in preventing the early onset of senescence.[Abstract] [Full Text] [Related] [New Search]