These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conserved network motifs allow protein-protein interaction prediction.
    Author: Albert I, Albert R.
    Journal: Bioinformatics; 2004 Dec 12; 20(18):3346-52. PubMed ID: 15247093.
    Abstract:
    MOTIVATION: High-throughput protein interaction detection methods are strongly affected by false positive and false negative results. Focused experiments are needed to complement the large-scale methods by validating previously detected interactions but it is often difficult to decide which proteins to probe as interaction partners. Developing reliable computational methods assisting this decision process is a pressing need in bioinformatics. RESULTS: We show that we can use the conserved properties of the protein network to identify and validate interaction candidates. We apply a number of machine learning algorithms to the protein connectivity information and achieve a surprisingly good overall performance in predicting interacting proteins. Using a 'leave-one-out' approach we find average success rates between 20 and 40% for predicting the correct interaction partner of a protein. We demonstrate that the success of these methods is based on the presence of conserved interaction motifs within the network. AVAILABILITY: A reference implementation and a table with candidate interacting partners for each yeast protein are available at http://www.protsuggest.org.
    [Abstract] [Full Text] [Related] [New Search]