These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proteasome-dependent degradation of cyclin D1 in 1-methyl-4-phenylpyridinium ion (MPP+)-induced cell cycle arrest. Author: Bai J, Nakamura H, Ueda S, Kwon YW, Tanaka T, Ban S, Yodoi J. Journal: J Biol Chem; 2004 Sep 10; 279(37):38710-4. PubMed ID: 15247282. Abstract: 1-Methyl-4-phenylpyridinium ion (MPP(+)), an active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, induces cell death and inhibition of cell proliferation in various cells. However, the mechanism whereby MPP(+) inhibits cell proliferation is still unclear. In this study, we found that MPP(+) suppressed the proliferation with accumulation in G(1) phase without inducing cell death in p53-deficient MG63 osteosarcoma cells. MPP(+) induced hypophosphorylation of retinoblastoma protein and rapidly down-regulated the protein but not mRNA levels of cyclin D1 in MG63 cells. The down-regulation of cyclin D1 protein was suppressed by a proteasome inhibitor, MG132. The cyclin D1 down-regulation by MPP(+) was also observed in p53-positive PC12, HeLa S3, and HeLa rho(0) cells, which are a subclone of HeLa S3 lacking mitochondrial DNA. Moreover, MPP(+) dephosphorylated Akt in PC12 cells, which was rescued by the pretreatment with nerve growth factor. In addition, the pretreatment with nerve growth factor or lithium chloride, a glycogen synthase kinase-3beta inhibitor, suppressed the cyclin D1 down-regulation caused by MPP(+). Our results demonstrate that MPP(+) induces cell cycle arrest independently of its mitochondrial toxicity or the p53 status of the target cells, but rather through the proteasome- and phosphatidylinositol 3-Akt-glycogen synthase kinase-3beta-dependent cyclin D1 degradation.[Abstract] [Full Text] [Related] [New Search]