These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The biosynthesis of D-Galacturonate in plants. functional cloning and characterization of a membrane-anchored UDP-D-Glucuronate 4-epimerase from Arabidopsis.
    Author: Mølhøj M, Verma R, Reiter WD.
    Journal: Plant Physiol; 2004 Jul; 135(3):1221-30. PubMed ID: 15247385.
    Abstract:
    Pectic cell wall polysaccharides owe their high negative charge to the presence of D-galacturonate, a monosaccharide that appears to be present only in plants and some prokaryotes. UDP-D-galacturonate, the activated form of this sugar, is known to be formed by the 4-epimerization of UDP-D-glucuronate; however, no coding regions for the epimerase catalyzing this reaction have previously been described in plants. To better understand the mechanisms by which precursors for pectin synthesis are produced, we used a bioinformatics approach to identify and functionally express a UDP-D-glucuronate 4-epimerase (GAE1) from Arabidopsis. GAE1 is predicted to be a type II membrane protein that belongs to the family of short-chain dehydrogenases/reductases. The recombinant enzyme expressed in Pichia pastoris established a 1.3:1 equilibrium between UDP-D-galacturonate and UDP-D-glucuronate but did not epimerize UDP-D-Glc or UDP-D-Xyl. Enzyme assays on cell extracts localized total UDP-D-glucuronate 4-epimerase and recombinant GAE1 activity exclusively to the microsomal fractions of Arabidopsis and Pichia, respectively. GAE1 had a pH optimum of 7.6 and an apparent Km of 0.19 mm. The recombinant enzyme was strongly inhibited by UDP-D-Xyl but not by UDP, UDP-D-Glc, or UDP-D-Gal. Analysis of Arabidopsis plants transformed with a GAE1:GUS construct showed expression in all tissues. The Arabidopsis genome contains five GAE1 paralogs, all of which are transcribed and predicted to contain a membrane anchor. This suggests that all of these enzymes are targeted to an endomembrane system such as the Golgi where they may provide UDP-D-galacturonate to glycosyltransferases in pectin synthesis.
    [Abstract] [Full Text] [Related] [New Search]