These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased CRE-binding activity and tryptophan hydroxylase mRNA expression induced by 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") in the rat frontal cortex but not in the hippocampus. Author: García-Osta A, Del Río J, Frechilla D. Journal: Brain Res Mol Brain Res; 2004 Jul 26; 126(2):181-7. PubMed ID: 15249142. Abstract: A single administration of either 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") or p-chloroamphetamine (PCA) produced a rapid and marked reduction of serotonin (5-HT) content in rat frontal cortex and hippocampus. In the cortex of MDMA-treated rats, 5-HT levels returned to control values 48 h after drug administration. This recovery was correlated with an induction of CRE-binding activity and an enhanced expression of tryptophan hydroxylase (TPH) mRNA, the rate-limiting enzyme in 5-HT biosynthesis, suggesting that MDMA may up-regulate the TPH gene through a CREB-dependent mechanism. In the cortex of PCA-treated rats, neither a recovery of 5-HT levels nor changes in DNA-binding or TPH mRNA were found at the same time point. In the hippocampus of rats receiving either PCA or MDMA a decrease in TPH mRNA levels was found at all times, along with a reduced CRE-binding at the 8-h time point. The results show region-specific effects of MDMA. In the frontal cortex, the increased TPH expression suggests a compensatory response to MDMA-induced loss of serotonergic function.[Abstract] [Full Text] [Related] [New Search]