These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Male mice that do not express group VIA phospholipase A2 produce spermatozoa with impaired motility and have greatly reduced fertility. Author: Bao S, Miller DJ, Ma Z, Wohltmann M, Eng G, Ramanadham S, Moley K, Turk J. Journal: J Biol Chem; 2004 Sep 10; 279(37):38194-200. PubMed ID: 15252026. Abstract: The Group VIA Phospholipase A(2) (iPLA(2)beta) is the first recognized cytosolic Ca(2+)-independent PLA(2) and has been proposed to participate in arachidonic acid (20:4) incorporation into glycerophosphocholine lipids, cell proliferation, exocytosis, apoptosis, and other processes. To study iPLA(2)beta functions, we disrupted its gene by homologous recombination to generate mice that do not express iPLA(2)beta. Heterozygous iPLA(2)beta(+/-) breeding pairs yield a Mendelian 1:2:1 ratio of iPLA(2)beta(+/+), iPLA(2)beta(+/-), and iPLA(2)beta(-/-) pups and a 1:1 male:female gender distribution of iPLA(2)beta(-/-) pups. Several tissues of wild-type mice express iPLA(2)beta mRNA, immunoreactive protein, and activity, and testes express the highest levels. Testes or other tissues of iPLA(2)beta(-/-) mice express no iPLA(2)beta mRNA or protein, but iPLA(2)beta(-/-) testes are not deficient in 20:4-containing glycerophosphocholine lipids, indicating that iPLA(2)beta does not play an obligatory role in formation of such lipids in that tissue. Spermatozoa from iPLA(2)beta(-/-) mice have reduced motility and impaired ability to fertilize mouse oocytes in vitro and in vivo, and inhibiting iPLA(2)beta with a bromoenol lactone suicide substrate reduces motility of wild-type spermatozoa in a time- and concentration-dependent manner. Mating iPLA(2)beta(-/-) male mice with iPLA(2)beta(+/+), iPLA(2)beta(+/-), or iPLA(2)beta(-/-) female mice yields only about 7% of the number of pups produced by mating pairs with an iPLA(2)beta(+/+) or iPLA(2)beta(+/-) male, but iPLA(2)beta(-/-) female mice have nearly normal fertility. These findings indicate that iPLA(2)beta plays an important functional role in spermatozoa, suggest a target for developing male contraceptive drugs, and complement reports that disruption of the Group IVA PLA(2) (cPLA(2)alpha) gene impairs female reproductive ability.[Abstract] [Full Text] [Related] [New Search]