These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of the biosynthesis of N-acetylneuraminic acid by metal ions and selenium in vitro.
    Author: Zeitler R, Banzer JP, Bauer C, Reutter W.
    Journal: Biometals; 1992; 5(2):103-9. PubMed ID: 1525476.
    Abstract:
    In liver homogenate the biosynthesis of N-acetylneuraminic acid using N-acetylglucosamine as precursor can be followed stepwise by applying different chromatographic procedures. In this cell-free system 16 metal ions (Zn2+, Mn2+, La3+, Co2+, Cu2+, Hg2+, VO3-, Pb2+, Ce3+, Cd2+, Fe2+, Fe3+, Al3+, Sn2+, Cs+ and Li+) and the selenium compounds, selenium(IV) oxide and sodium selenite, have been checked with respect to their ability to influence a single or possibly several steps of the biosynthesis of N-acetylneuraminic acid. It could be shown that the following enzymes are sensitive to these metal ions (usually applied at a concentration of 1 mmol l-1): N-acetylglucosamine kinase (inhibited by Zn2+ and vandate), UDP-N-acetylglucosamine-2'-epimerase (inhibited by Zn2+, Co2+, Cu2+, Hg2+, VO3-, Pb2+, Cd2+, Fe3+, Cs+, Li+, selenium(IV) oxide and selenite), and N-acetylmannosamine kinase (inhibited by Zn2+, Cu2+, Cd2+ and Co2+). Dose dependent measurements have shown that Zn2+, Cu2+ and selenite are more efficient inhibitors of UDP-N-acetylglucosamine-2'-epimerase than vanadate. As for the N-acetylmannosamine kinase inhibition, a decreasing inhibitory effect exists in the following order Zn2+, Cd2+, Co2+ and Cu2+. In contrast, La3+, Al3+ and Mn2+ (1 mmol l-1) did not interfere with the biosynthesis of N-acetylneuraminic acid. Thus, the conclusion that the inhibitory effect of the metal ions investigated cannot be regarded as simply unspecific is justified.
    [Abstract] [Full Text] [Related] [New Search]