These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of Cd2+ with Zn finger 3 of transcription factor IIIA: structures and binding to cognate DNA.
    Author: Krepkiy D, Försterling FH, Petering DH.
    Journal: Chem Res Toxicol; 2004 Jul; 17(7):863-70. PubMed ID: 15257610.
    Abstract:
    Finger 3 of transcription factor IIIA of Xenopus laevis was synthesized and constituted with Zn(2+) or Cd(2+). The C-block element of the internal control region of the promoter of the 5S rRNA gene binds to the Zn-F3 and Cd-F3 with dissociation constants of 2.6 x 10(-5) and 1.5 x 10(-4) M, respectively. According to NMR spectroscopy, Zn-F3, as well as Cd-F3, exists as a conformational equilibrium that is not susceptible to structural analysis by NMR methods. To restrict the observed conformational flexibility, a mutant F3 (mF3), which differs from F3 in the number and type of amino acids between the cysteine and the histidine ligands, was synthesized. The affinity of Zn-mF3 for the C-block DNA was greatly reduced relative to Zn-F3. Nevertheless, the metal ion dissociation constants of the Zn- and Cd-mF3 complexes remain similar to those of the native structures at 4.5 x 10(-9) and 3.2 x 10(-8) M, respectively. Zn-mF3 is more thermally stable than Cd-mF3, but both adopt similar conformations according to two-dimensional (1)H NMR spectroscopy. Each peptide displays a betabetaalpha fold for its backbone that is typical of this class of zinc finger domains. The(113)Cd ion in (113)Cd-mF3 is coupled to the protons of two cysteine and two histidine residues and characterized by a chemical shift of 567 ppm.
    [Abstract] [Full Text] [Related] [New Search]