These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). Author: Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, Chiba M, Kobayashi H, Eriguchi M, Yanagie H. Journal: J Control Release; 2004 Aug 11; 98(2):195-207. PubMed ID: 15262412. Abstract: The successful treatment of cancer by boron neutron-capture therapy (BNCT) requires the selective delivery of relatively high concentration of 10B compounds to malignant tumor tissue. This study focuses on a new tumor-targeting drug delivery system for BNCT that uses small (less than 200 nm in diameter), unilamellar mercaptoundecahydrododecaborate (BSH)-encapsulating, transferrin (TF)-conjugated polyethyleneglycol liposomes (TF-PEG liposomes). When TF-PEG liposomes were injected at a dose of 35 mg 10B/kg, we observed a prolonged residence time in the circulation and low uptake by the reticuloendothelial system (RES) in Colon 26 tumor-bearing mice, resulting in enhanced accumulation of 10B into the solid tumor tissue (e.g., 35.5 microg/g). TF-PEG liposomes maintained a high 10B level in the tumor, with concentrations over 30 microg/g for at least 72 h after injection. This high retention of 10B in tumor tissue indicates that binding and concomitant cellular uptake of the extravasated TF-PEG liposomes occurs by TF receptor and receptor-mediated endocytosis, respectively. On the other hand, the plasma level of 10B decreased, resulting in a tumor/plasma ratio of 6.0 at 72 h after injection. Therefore, 72 h after injection of TF-PEG liposomes was selected as the time point of BNCT treatment. Administration of BSH encapsulated in TF-PEG liposomes at a dose of 5 or 20 mg 10B/kg and irradiation with 2 x 10(12) neutrons/cm2 for 37 min produced tumor growth suppression and improved long-term survival compared with PEG liposomes, bare liposomes and free BSH. Thus, intravenous injection of TF-PEG liposomes can increase the tumor retention of 10B atoms, which were introduced by receptor-mediated endocytosis of liposomes after binding, causing tumor growth suppression in vivo upon thermal neutron irradiation. These results suggest that BSH-encapsulating TF-PEG liposomes may be useful as a new intracellular targeting carrier in BNCT therapy for cancer.[Abstract] [Full Text] [Related] [New Search]