These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Learning kernels from biological networks by maximizing entropy.
    Author: Tsuda K, Noble WS.
    Journal: Bioinformatics; 2004 Aug 04; 20 Suppl 1():i326-33. PubMed ID: 15262816.
    Abstract:
    MOTIVATION: The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks. RESULTS: We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein-protein interaction networks. AVAILABILITY: Supplementary results and data are available at noble.gs.washington.edu/proj/maxent
    [Abstract] [Full Text] [Related] [New Search]