These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acyl-coenzyme A:cholesterol acyltransferase inhibition ameliorates proteinuria, hyperlipidemia, lecithin-cholesterol acyltransferase, SRB-1, and low-denisty lipoprotein receptor deficiencies in nephrotic syndrome.
    Author: Vaziri ND, Liang KH.
    Journal: Circulation; 2004 Jul 27; 110(4):419-25. PubMed ID: 15262831.
    Abstract:
    BACKGROUND: Nephrotic syndrome (NS) is associated with hyperlipidemia, altered lipid regulatory enzymes and receptors, and increased risk of progressive renal and cardiovascular diseases. Acyl-coenzyme A:cholesterol acyltransferase (ACAT) catalyzes intracellular esterification of cholesterol and plays an important role in production of apolipoprotein B-containing lipoproteins, regulation of cholesterol-responsive proteins, and formation of foam cells. Because hepatic ACAT-2 is markedly upregulated in NS, we tested the hypothesis that inhibition of ACAT may improve cholesterol metabolism in NS. METHODS AND RESULTS: Rats with puromycin-induced NS were treated with either the ACAT inhibitor CI-976 or placebo for 2 weeks. Normal rats served as controls. Plasma lipids, renal function, and key lipid regulatory factors were measured. Untreated NS rats showed heavy proteinuria; hypoalbuminemia; elevated plasma cholesterol, triglyceride, LDL, VLDL, and total cholesterol-to-HDL cholesterol ratio; increased hepatic ACAT activity, ACAT-2 mRNA, and ACAT-2 protein; and reduced LDL receptor, HDL receptor, otherwise known as scavenger receptor B-1 (SRB-1) and plasma lecithin-cholesterol acyltransferase (LCAT). ACAT inhibitor reduced plasma cholesterol and triglycerides, normalized total cholesterol-to-HDL cholesterol ratio, and lowered hepatic ACAT activity without changing ACAT-2 mRNA or protein. This was accompanied by near normalizations of plasma LCAT, hepatic SRB-1, and LDL receptor and a significant amelioration of proteinuria and hypoalbuminemia. CONCLUSIONS: Pharmacological inhibition of ACAT reverses NS-induced LDL receptor, HDL receptor, and LCAT deficiencies; improves plasma lipid profile; and ameliorates proteinuria in nephrotic animals. Further studies are needed to explore the effect of ACAT inhibition in nephrotic humans.
    [Abstract] [Full Text] [Related] [New Search]