These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nkx2.1 transcription factor in lung cells and a transforming growth factor-beta1 heterozygous mouse model of lung carcinogenesis.
    Author: Kang Y, Hebron H, Ozbun L, Mariano J, Minoo P, Jakowlew SB.
    Journal: Mol Carcinog; 2004 Aug; 40(4):212-31. PubMed ID: 15264213.
    Abstract:
    The Nkx2.1 homeobox gene and transforming growth factor-beta1 (TGF-beta1) are essential for organogenesis and differentiation of the mouse lung. NKX2.1 is a marker of human lung carcinomas, but it is not known whether this gene participates in early tumorigenesis. Addition of TGF-beta1 to TGF-beta1-responsive nontumorigenic mouse lung cells cotransfected with a NKX2.1Luc luciferase reporter and either a Sp1 or Sp3 plasmid showed a significant increase or decrease, respectively, in NKX2.1Luc transcription. Cotransfection of Sp3 and dominant-negative TGF-beta type II receptor plasmids negated the effect of Sp1. Cotransfected Sp1 plasmid with either dominant-negative Smad2 or Smad3 or Smad4 plasmids significantly decreased NKX2.1Luc transcription. Electrophoretic mobility shift assays revealed binding of Sp1 and Smad4 to the NKX2.1 promoter. With a TGF-beta1 heterozygous mouse model, Nkx2.1 mRNA and protein in lungs of TGF-beta1 heterozygous mice were significantly lower compared to wildtype (WT) littermates. Competitive reverse transcription (RT)-polymerase chain reaction (PCR) and immunostaining showed that Nkx2.1 mRNA and protein decreased significantly in adenomas and adenocarcinomas compared to normal lung tissue. Our in vitro data showed that regulation of Nkx2.1 by TGF-beta1 occurs through TGF-beta type II receptor and Smad signaling, with Sp1 and Sp3 in lung cells. Our in vivo data showed reduced Nkx2.1 in lungs of TGF-beta1 heterozygous mice compared to WT mice, that is detectable in adenomas, and that is further reduced in carcinogenesis, and that correlates with reduction of Sp1, Sp3, and Smads in lung adenocarcinomas. Our findings suggest that reduced Nkx2.1 and TGF-beta1 signaling components may contribute to tumorigenesis in the lungs of TGF-beta1 heterozygous mice.
    [Abstract] [Full Text] [Related] [New Search]