These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytotoxic mechanisms by M239V presenilin 2, a little-analyzed Alzheimer's disease-causative mutant. Author: Abe Y, Hashimoto Y, Tomita Y, Terashita K, Aiso S, Tajima H, Niikura T, Matsuoka M, Nishimoto I. Journal: J Neurosci Res; 2004 Aug 15; 77(4):583-95. PubMed ID: 15264228. Abstract: Although neurotoxic functions are well characterized in familial Alzheimer's disease (FAD)-linked N141I mutant of presenilin (PS)2, little has been known about M239V-PS2, another established FAD-causative mutant. We found that expression of M239V-PS2 caused neuronal cytotoxicity. M239V-PS2 exerted three forms of cytotoxicity: one was sensitive to both an antioxidant glutathione-ethyl-ester (GEE) and a caspase inhibitor Ac-DEVD-CHO (DEVD); the second was sensitive to GEE but resistant to DEVD; and the third was resistant to both. The GEE/DEVD-sensitive cytotoxicity by M239V-PS2 was likely through NADPH oxidase and the GEE-sensitive/DEVD-resistant cytotoxicity through xanthine oxidase (XO). Both mechanisms by M239V-PS2 were suppressed by pertussis toxin (PTX) and were mediated by Galpha(o), but not by Galpha(i). Although Abeta1-43 itself induced no cytotoxicity, Abeta1-43 potentiated all three components of M239V-PS2 cytotoxicity. As these cytotoxic mechanisms by M239V-PS2 are fully shared with N141I-PS2, they are most likely implicated in the pathomechanism of FAD by PS2 mutations. Notably, cytotoxicity by M239V-PS2 could be inhibited by the combination of two clinically usable inhibitors of superoxide-generating enzymes, apocynin and oxypurinol.[Abstract] [Full Text] [Related] [New Search]