These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Planktonic primary production in a tidally influenced mangrove forest on the Pacific coast of Costa Rica. Author: Gocke K, Cortés J, Murillo MM. Journal: Rev Biol Trop; 2001 Dec; 49 Suppl 2():279-88. PubMed ID: 15264542. Abstract: The seasonal variation of planktonic primary productivity was measured during one year in the main channel in the interior part of the mangrove forest of the Estero de Morales (Estero de Punta Morales), a mangrove system located in the Golfo de Nicoya at the Pacific coast of Costa Rica. Samples were incubated at the surface, 0.5 m and 1.0 m depth and the "light and dark bottle technique" was employed. The annual gross primary productivity (PPg) was 457 and the net primary productivity (PPn) was 278 g C m(-2) a(-1). Daily PPg ranged from 0.29 to 3.88 and PPn from 0.12 to 2.76 g C m(-2) d(-1). The highest rates observed in May and September were due to red tide blooms. The seasonal variation of primary productivity inside the mangrove forest depends closely on the PP in the adjacent area of the upper Golfo de Nicoya. Obviously the PP was light-limited since the compensation depth in the ebb current was found at only 1 m depth. In the flood current it was somewhat deeper. The planktonic primary productivity inside the mangrove forest was completely restricted to the open channels. A simultaneous measurement demonstrated that PPn of the phytoplankton could not take place under the canopy of the mangroves. Additional studies on the time course of the oxygen concentration in the mouth of the main channel over 24 hrs demonstrated a relation between the O2 and the tidal curves. The ebb current had always lower O2 concentrations than the flood current, regardless of the time of the day. The difference to the foregoing high tide, however, was much smaller when the low tide occurred during the day. This indicates that under the canopy the net primary production and hence O2 liberation of the attached macro- and microalgae, together with the high PPn of the phytoplankton in the channels, helped the oxygen concentration not to decrease as far as during the night. Nevertheless it shows that the consumtion of organic material in the submersed part of the mangrove forest exceeds always its production.[Abstract] [Full Text] [Related] [New Search]