These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Triploid bridge and role of parthenogenesis in the evolution of autopolyploidy.
    Author: Yamauchi A, Hosokawa A, Nagata H, Shimoda M.
    Journal: Am Nat; 2004 Jul; 164(1):101-12. PubMed ID: 15266374.
    Abstract:
    Autopolyploidization is considered to play an important role in plant evolution. In polyploidization, the polyploid evolves from the original diploid cytotype, in which the triploid state is considered to mediate the process (triploid bridge). Nevertheless, the fitness of triploid individuals seems to be too low to facilitate the polyploidization process (triploid block). The evolutionary condition of autopolyploidy was analyzed using a mathematical model focusing on the role of parthenogenesis in triploid and tetraploid individuals. In addition, offspring were assumed to arise by sexual reproduction by conjugations between haploid, diploid, and triploid gametes produced by diploid, tetraploid, and triploid individuals. According to the analysis, even if triploid block suppresses the fitness of sexually produced triploids, the polyploidization process can proceed when parthenogenesis occurs frequently. If only triploids frequently reproduce parthenogenetically, the evolutionary consequences tend to depend on the fitness of the tetraploid individuals. On the basis of a predetermined parameter set, if tetraploid fitness is relatively low, all three ploidies can coexist. Otherwise, tetraploidization occurs. In this case, triploid parthenogenesis promotes not only triploidization but also tetraploidization. However, if both triploids and tetraploids frequently reproduce parthenogenetically, the ploidy levels with the highest fitness are likely to dominate in the population through direct competition among cytotypes.
    [Abstract] [Full Text] [Related] [New Search]