These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mode-coupling study on the dynamics of hydrophobic hydration. Author: Yamaguchi T, Matsuoka T, Koda S. Journal: J Chem Phys; 2004 Apr 22; 120(16):7590-601. PubMed ID: 15267671. Abstract: The molecular motion of water in water-hydrophobic solute mixtures was investigated by the mode-coupling theory for molecular liquids based on the interaction-site description. When the model Lennard-Jones solute was mixed with water, both the translational and reorientational motions of solvent water become slower, in harmony with various experiments and molecular dynamics simulations. We compared the mechanism of the slowing down with that of the pressure dependence of the molecular motion of neat water [T. Yamaguchi, S.-H. Chong, and F. Hirata, J. Chem. Phys. 119, 1021 (2003)]. We found that the decrease in the solvent mobility caused by the solute can essentially be elucidated by the same mechanism: That is, the fluctuation of the number density of solvent due to the cavity formation by the solute strengthens the friction on the collective polarization through the dielectric friction mechanism: We also employed the solute molecule that is the same as solvent water except for the amount of partial charges, in order to alter the strength of the solute-solvent interaction continuously. The mobility of the solvent water was reduced both by the hydrophobic and strongly hydrophilic solutes, but it was enhanced in the intermediate case. Such a behavior was discussed in connection with the concept of positive and negative hydrations.[Abstract] [Full Text] [Related] [New Search]