These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The diazocarbene (CNN) molecule: characterization of the X 3Sigma- and A 3Pi electronic states.
    Author: Yamaguchi Y, Schaefer HF.
    Journal: J Chem Phys; 2004 May 22; 120(20):9536-46. PubMed ID: 15267965.
    Abstract:
    The ground (X (3)Sigma(-)) and first excited triplet (A (3)Pi) electronic states of diazocarbene (CNN) have been investigated systematically starting from the self-consistent-field theory and proceeding to the coupled cluster with single, double, and full triple excitations (CCSDT) method with a wide range of basis sets. While the linear X (3)Sigma(-) ground state of CNN has a real degenerate bending vibrational frequency, the A (3)Pi state of CNN is subject to the Renner-Teller effect and presents two distinct real vibrational frequencies along the bending coordinate. The bending vibrational frequencies of the A (3)Pi state were evaluated via the equation-of-motion coupled cluster (EOM-CC) techniques. The significant sensitivity to level of theory in predicting the ground-state geometry, harmonic vibrational frequencies, and associated infrared intensities has been attributed to the fact that the reference wave function is strongly perturbed by the excitations of 1pi-->3pi followed by a spin flip. At the highest level of theory with the largest basis set, correlation-consistent polarized valence quadruple zeta (cc-pVQZ) CCSDT, the classical X-A splitting (T(e) value) was predicted to be 68.5 kcal/mol (2.97 eV, 24 000 cm(-1)) and the quantum mechanical splitting (T(0) value) to be 69.7 kcal/mol (3.02 eV, 24 400 cm(-1)), which are in excellent agreement with the experimental T(0) values, 67.5-68.2 kcal/mol (2.93-2.96 eV, 23 600-23 900 cm(-1)). With the EOM-CCSD method the Renner parameter (epsilon) and averaged bending vibrational frequency (omega(2)) for the A (3)Pi state were evaluated to be epsilon=-0.118 and omega(2)=615 cm(-1), respectively. They are in fair agreement with the experimental values of epsilon=-0.07 and nu(2)=525 cm(-1).
    [Abstract] [Full Text] [Related] [New Search]