These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Three-dimensional structure of the vacuolar ATPase. Localization of subunit H by difference imaging and chemical cross-linking. Author: Wilkens S, Inoue T, Forgac M. Journal: J Biol Chem; 2004 Oct 01; 279(40):41942-9. PubMed ID: 15269204. Abstract: The structure of the proton-pumping vacuolar ATPase (V-ATPase) from bovine brain clathrin coated vesicles was analyzed by electron microscopy and single molecule image analysis. A three-dimensional structural model of the complex was calculated by the angular reconstitution method at a resolution of 27 A. Overall, the appearance of the V(0) and V(1) domains in the three-dimensional model of the intact bovine V-ATPase resembles the models of the isolated bovine V(0) and yeast V(1) domains determined previously. To determine the binding position of subunit H in the V-ATPase, electron microscopy and cysteine-mediated photochemical cross-linking were used. Difference maps calculated from projection images of intact bovine V-ATPase and a V-ATPase preparation in which the two H subunit isoforms were removed by treatment with cystine revealed less protein density at the bottom of the V(1) in the subunit H-depleted enzyme, suggesting that subunit H isoforms bind at the interface of the V(1) and V(0) domains. A comparison of three-dimensional models calculated for intact and subunit H-depleted enzyme indicated that at least one of the subunit H isoforms, although poorly resolved in the three-dimensional electron density, binds near the putative N-terminal domain of the a subunit of the V(0). For photochemical cross-linking, unique cysteine residues were introduced into the yeast V-ATPase B subunit at sites that were localized based on molecular modeling using the crystal structure of the mitochondrial F(1) domain. Cross-linking was performed using the photoactivatable sulfhydryl reagent 4-(N-maleimido)benzophenone. Cross-linking to subunit H was observed from two sites on subunit B (E494 and T501) predicted to be located on the outer surface of the subunit closest to the membrane. Results from both electron microscopy and cross-linking analysis thus place subunit H near the interface of the V(1) and V(0) domains and suggest a close structural similarity between the V-ATPases of yeast and mammals.[Abstract] [Full Text] [Related] [New Search]