These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterisation of the effects of ATPA, a GLU(K5) kainate receptor agonist, on GABAergic synaptic transmission in the CA1 region of rat hippocampal slices. Author: Clarke VR, Collingridge GL. Journal: Neuropharmacology; 2004 Sep; 47(3):363-72. PubMed ID: 15275825. Abstract: Kainate receptors are implicated in a variety of physiological and pathological processes in the CNS. Previously we demonstrated that (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA), a selective agonist for the GLU(K5) subtype of kainate receptor, depresses monosynaptically evoked inhibitory postsynaptic potentials (IPSPs) in the CA1 region of the rat hippocampus. In the current study, we provide a more detailed characterisation of this effect. Firstly, our data demonstrate a rank order of potency of domoate>kainate>ATPA>alpha-amino-3-(3-hydroxy-5-methyl-4-isoxalolyl)propionic acid Secondly, we confirm that the effects of ATPA are not mediated indirectly via the activation of gamma-aminobutyric acid receptors (i.e. either GABA(A) or GABA(B)). Thirdly, we show that the small increase in conductance induced by ATPA is insufficient to account for the depression of monosynaptic inhibition. Fourthly, we show that the effects of ATPA on IPSPs are antagonised by the GLU(K5)-selective antagonist (3S, 4aR, 6S, 8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid (LY382884). However, LY382884 is less potent as an antagonist of the effects of ATPA on IPSPs compared to its depressant effect on EPSPs.[Abstract] [Full Text] [Related] [New Search]