These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential expression and activation of Stat3 during mouse embryo implantation and decidualization. Author: Teng CB, Diao HL, Ma XH, Xu LB, Yang ZM. Journal: Mol Reprod Dev; 2004 Sep; 69(1):1-10. PubMed ID: 15278897. Abstract: Signal transducer and activator of transcription (STATs) can be activated by many cytokines and growth factors. Stat3, a member of STAT family, is essential for embryonic development. Stat3 is specifically activated during mouse embryo implantation. This study was to investigate the expression, activation, and regulation of Stat3 in mouse uterus during early pregnancy, pseudopregnancy, delayed implantation, artificial decidualization, and hormonal treatments using in situ hybridization and immunohistochemistry. There was a strong level of Stat3 phosphorylation in the luminal epithelium only at the midnight of day 4 pregnancy, which coincides with attachment reaction between the blastocyst and luminal epithelium. However, there was no detectable Stat3 phosphorylation at the corresponding period during pseudopregnancy. On day 5 of pregnancy, Stat3 phosphorylation was strongly observed in the luminal epithelium and the stroma surrounding the implanting blastocyst at implantation sites, but not at the inter-implantation sites. Stat3 phosphorylation was also not detected on day 5 of pseudopregnancy. Stat3 phosphorylation was at a high level in the decidual cells on days 6-8 of pregnancy. Under artificial decidualization, Stat3 was also phosphorylated in the decidual cells. In the ovariectomized mice, there was no Stat3 expression and activation in the uterus. Progesterone had no obvious effects. However, Stat3 mRNA expression and phosphorylation were significantly stimulated by estrogen treatment. Our data suggest that Stat3 phosphorylation may be important for mouse embryo implantation and decidualization, and may also be regulated by maternal estrogen.[Abstract] [Full Text] [Related] [New Search]