These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitric oxide measurements in rat mesentery reveal disrupted venulo-arteriolar communication in diabetes. Author: Nellore K, Harris NR. Journal: Microcirculation; 2004; 11(5):415-23. PubMed ID: 15280067. Abstract: OBJECTIVE: Arteriolar tone is partially controlled by diffusing mediators released by closely paired venules and is reported to depend on venular shear and venular leukocyte adherence. In healthy rat mesentery, venule-initiated arteriolar dilation and consequent enhanced capillary flow appear to be tightly regulated by nitric oxide (NO). In contrast, diabetes inhibits NO-dependent vasodilation and is associated with dysfunctional microcirculation. The objective of this study was to investigate venule-dependent NO in diabetes. METHODS: Arteriolar and venular wall concentrations of NO were measured in control and diabetic (streptozotocin-induced) rat mesentery with fluorescent diaminofluorescein-2-diacetate (DAF-2-DA); tissue NO was measured with DAF-2. Venular leukocyte adherence and microvascular shear rates were also measured. RESULTS: Microvascular NO in diabetic rats was found to be significantly lower (<50%) than in controls. In normal rats, arteriolar NO demonstrated a positive correlation with venular NO and venular shear, and a negative correlation with venular leukocyte adherence. Diabetes eliminated all these correlations. No correlation was present between arteriolar NO and arteriolar shear in either normal or diabetic rats. CONCLUSIONS: Arteriolar NO appears to be enhanced by venular shear in normal but not in diabetic rats. This dysfunction could contribute to poor capillary perfusion in diabetes.[Abstract] [Full Text] [Related] [New Search]