These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo function of the conserved non-catalytic domain of Werner syndrome helicase in DNA replication. Author: Sharma S, Sommers JA, Brosh RM. Journal: Hum Mol Genet; 2004 Oct 01; 13(19):2247-61. PubMed ID: 15282207. Abstract: Werner syndrome is a genetic disorder characterized by genomic instability, elevated recombination and replication defects. The WRN gene encodes a RecQ helicase whose function(s) in cellular DNA metabolism is not well understood. To investigate the role of WRN in replication, we examined its ability to rescue cellular phenotypes of a yeast dna2 mutant defective in a helicase-endonuclease that participates with flap endonuclease 1 (FEN-1) in Okazaki fragment processing. Genetic complementation studies indicate that human WRN rescues dna2-1 mutant phenotypes of growth, cell cycle arrest and sensitivity to the replication inhibitor hydroxyurea or DNA damaging agent methylmethane sulfonate. A conserved non-catalytic C-terminal domain of WRN was sufficient for genetic rescue of dna2-1 mutant phenotypes. WRN and yeast FEN-1 were reciprocally co-immunoprecipitated from extracts of transformed dna2-1 cells. A physical interaction between yeast FEN-1 and WRN is demonstrated by yeast FEN-1 affinity pull-down experiments using transformed dna2-1 cells extracts and by ELISA assays with purified recombinant proteins. Biochemical analyses demonstrate that the C-terminal domain of WRN or BLM stimulates FEN-1 cleavage of its proposed physiological substrates during replication. Collectively, the results suggest that the WRN-FEN-1 interaction is biologically important in DNA metabolism and are consistent with a role of the conserved non-catalytic domain of a human RecQ helicase in DNA replication intermediate processing.[Abstract] [Full Text] [Related] [New Search]