These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide attenuates cardiomyocytic apoptosis via diminished mitochondrial complex I up-regulation from cardiac ischemia-reperfusion injury under cardiopulmonary bypass.
    Author: Yeh CH, Lin YM, Wu YC, Wang YC, Lin PJ.
    Journal: J Thorac Cardiovasc Surg; 2004 Aug; 128(2):180-8. PubMed ID: 15282453.
    Abstract:
    OBJECTIVE: This study tested the hypothesis that cardioplegic solution supplemented with a nitric oxide donor agent attenuates postischemic cardiomyocytic apoptosis by reduction of mitochondrial complex I up-regulation during global cardiac arrest under cardiopulmonary bypass. METHODS: Twenty-four anesthetized dogs supported by total vented bypass were divided evenly into 4 groups (n = 6) and subjected to 60 minutes of hypothermic ischemia followed by 4 degrees C multidose crystalloid cardioplegic solution infusion. Hearts received either standard crystalloid cardioplegic solution (control), crystalloid cardioplegic solution supplemented with 2 mmol/L L-arginine (L-Arg group), crystalloid cardioplegic solution supplemented with 400 micromol/L N(G)-monomethyl-L-arginine (L-NMMA group), or crystalloid cardioplegic solution supplemented with 100 micromol/L of NO donor compound (3-morpholinosydnonimine; SIN-1 group). After 60 minutes of cardioplegic arrest, the heart was reperfused for a total of 240 minutes after discontinuation of bypass. The occurrence of cardiomyocytic apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling and Western blot analysis of caspase-3. RESULTS: The occurrence of cardiomyocytic apoptosis was significantly reduced in SIN-1 and L-Arg groups compared with the control group. Mitochondrial complex I mRNA was up-regulated in the control group, and its expression was significantly higher in the L-NMMA group but significantly reduced in the SIN-1 and L-Arg groups. Western blot analysis of Bcl-2 and cytochrome c, an index of mitochondrial damage in postischemic myocardium, revealed a similar pattern. CONCLUSION: Nitric oxide-supplemented crystalloid cardioplegic solution diminished postischemic cardiomyocytic apoptosis after global cardiac arrest under cardiopulmonary bypass, possibly via prevention of mitochondrial complex I up-regulation.
    [Abstract] [Full Text] [Related] [New Search]