These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: IGF-I and insulin induce different intracellular calcium signals in skeletal muscle cells.
    Author: Espinosa A, Estrada M, Jaimovich E.
    Journal: J Endocrinol; 2004 Aug; 182(2):339-52. PubMed ID: 15283694.
    Abstract:
    We studied the effect of IGF-I and insulin on intracellular Ca(2+) in primary cultured myotubes. IGF-I induced a fast and transient Ca(2+) increase, measured as fluo-3 fluorescence. This response was blocked by both genistein and AG538. IGF-I induced a fast inositol-1,4,5-trisphosphate (IP(3)) increase, kinetically similar to the Ca(2+) rise. The Ca(2+) signal was blocked by inhibitors of the IP(3) pathway. On the other hand, insulin produced a fast (<1 s) and transient Ca(2+) increase. Insulin-induced Ca(2+) increase was blocked in Ca(2+)-free medium and by either nifedipine or ryanodine. In the normal muscle NLT cell line, the Ca(2+ )signals induced by both hormones resemble those of primary myotubes. GLT cells, lacking the alpha1-subunit of dihydropyridine receptor (DHPR), responded to IGF-I but not to insulin, while GLT cells transfected with the alpha1-subunit of DHPR reacted to both hormones. Moreover, dyspedic muscle cells, lacking ryanodine receptors, responded to IGF-I as NLT cells, however they show no insulin-induced calcium increase. Moreover, G-protein inhibitors, pertussis toxin (PTX) and GDPbetaS, blocked the insulin-induced Ca(2+) increase without major modification of the response to IGF-I. The different intracellular Ca(2+) patterns produced by IGF-I and insulin may improve our understanding of the early action mechanisms for these hormones in skeletal muscle cells.
    [Abstract] [Full Text] [Related] [New Search]