These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of neural pathways involved in genital reflexes in the female: a combined anterograde and retrograde tracing study. Author: Marson L, Foley KA. Journal: Neuroscience; 2004; 127(3):723-36. PubMed ID: 15283970. Abstract: The medial preoptic area (MPOA) is important for reproductive behavior in females. However, the descending pathways mediating these responses to the spinal motor output are unknown. The MPOA does not directly innervate the spinal cord. Therefore, pathways mediating MPOA-induced changes in sexual behavior must relay in the brain. The nucleus paragigantocellularis (nPGi) projects heavily to spinal circuits involved in female sexual reflexes and is involved in the tonic inhibition of genital reflexes. However, the periaqueductal gray (PAG) is also important for female sexual behavior. The present study examined the hypothesis that the MPOA output relays through PAG and the nPGi before descending to the spinal cord. We used anterograde and retrograde tracing techniques to examine the descending pathways and relay sites from the MPOA to the spinal cord and the nPGi in the female rat. Injection of biotinylated dextran amine into the MPOA produced dense labeling in specific regions of the PAG and Barrington's nucleus; anterogradely labeled fibers terminated close to neurons retrogradely labeled from the spinal cord in the PAG, Barrington's nucleus, nPGi, lateral hypothalamus and paraventricular nucleus (PVN). Anterogradely labeled fibers and varicosities were also found close to neurons retrogradely labeled from the nPGi in the PAG, lateral hypothalamus and PVN. These results suggest that the major MPOA output relays in the PAG and nPGi before descending to innervate spinal circuits regulating female genital reflexes and that the MPOA plays a multifaceted role in female reproductive behavior through its modulation of PAG output systems.[Abstract] [Full Text] [Related] [New Search]