These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Solvent control of spin-dependent charge recombination mechanisms within donor-conjugated bridge-acceptor molecules.
    Author: Weiss EA, Ahrens MJ, Sinks LE, Ratner MA, Wasielewski MR.
    Journal: J Am Chem Soc; 2004 Aug 11; 126(31):9510-1. PubMed ID: 15291533.
    Abstract:
    We have shown recently that the oligomeric p-phenylene bridge within the PTZ-(Ph)n-PDI (PTZ = phenothiazine, Ph = phenyl, and PDI = perylenediimide) donor-bridge-acceptor system acts as a molecular wire in toluene, as shown by a change in the rate of radical ion pair (RP) recombination within PTZ+*-(Ph)n-PDI-* from an exponential distance dependence to a linear distance dependence as the bridge becomes longer. The population of the RP and its spin-selective recombination products are sensitive to the application of an external magnetic field, which can be used to directly measure the singlet-triplet splitting, 2J, within the RP. The value of 2J is a weighted sum of electronic coupling matrix elements that are to a good approximation directly proportional to VDA2, the effective coupling between the orbitals on the donor and acceptor sites. The dependence of RP population on magnetic field reveals the relative contributions of the singlet and triplet charge recombination (CR) pathways to overall RP decay. We have now observed an "inversion" of the MFE on the RP population within PTZ+*-(Ph)4-PDI-* and PTZ+*-(Ph)5-PDI-* upon a switch in solvent from toluene to 2-methyltetrahydrofuran (MTHF). We interpret the inversion of the MFE as a switch in the relative importance of the singlet and triplet charge recombination (CRS, CRT) pathways due to a stabilization of the RP state by more polar MTHF, making CRS more energetically favorable. This change in mechanism illustrates the sensitivity of molecular wire behavior to the surrounding environment.
    [Abstract] [Full Text] [Related] [New Search]