These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly(epsilon-caprolactone) composite membranes. Author: Kim HW, Knowles JC, Kim HE. Journal: J Biomed Mater Res A; 2004 Sep 01; 70(3):467-79. PubMed ID: 15293321. Abstract: Poly(epsilon-caprolactone) (PCL) and biphasic calcium phosphate (CaP) composite membranes were prepared for use in tissue regeneration by a novel solvent casting-pressing method. An antibiotic drug, tetracycline hydrochloride (TCH), was entrapped within the membranes to investigate the efficacy of the material as a drug delivery system. The CaP powders were varied in amount (0-50 wt %) and in powder characteristics by heat treating at different temperatures, and their effects on the mechanical and biological properties and drug release of the membranes were examined. With CaP addition up to 30 wt %, the elastic modulus of the membranes was enhanced much due to the rigidity of CaP. While the tensile strength and elongation rate decreased gradually with CaP addition because the CaP powders acted as a failure source. The osteoblast-like cells cultured on the CaP-PCL composite membranes exhibited significant improvements in proliferation and alkaline phosphatase (ALP) activity compared to pure PCL and culture plastic control, indicating excellent cell viability and functional activity. The TCH drugs were released from the PCL and CaP-PCL membranes in a similar fashion; an initial burst followed by a reduced release rate. The initial burst effect diminished much by the addition of CaP powders. The CaP addition increased the drug release rate after an initial period, and this was attributed to the high water uptake capacity and dissolution of the CaP containing membranes. Compared to the composite membranes containing heat-treated CaP powders, those with as-precipitated ones had higher dissolution and drug releases. These observations on mechanical properties and cellular responses as well as on drug release profiles suggested that the CaP-PCL composite membranes are potentially applicable to tissue regeneration and drug delivery system.[Abstract] [Full Text] [Related] [New Search]