These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Schwann cell apoptosis in Wallerian-degenerated sciatic nerve of the rat.
    Author: Chen Z, Chen ZX, Chen HX, Chen HS, Zhou T, Lu HS.
    Journal: Chin J Traumatol; 2004 Aug; 7(4):220-8. PubMed ID: 15294101.
    Abstract:
    OBJECTIVE: To investigate systematically Schwann cell apoptosis in Wallerian-degenerated sciatic nerve of the rat, and evaluate its time-related feature. METHODS: Ninety-five SD rats were divided randomly into one normal group (8 rats) and 11 experimental groups (66 rats, 6 in each). Both hind legs of each rat in experimental groups were randomly divided into test leg (sciatic nerve transected) and control one (nerve uninjured). All test legs constituted a test group and all control legs constituted a control one. After operation, all rats were respectively sacrificed at 1 h, 6 h, 12 h, 24 h, 2 d, 3 d, 4 d, 8 d, 14 d, 21 d, and 30 d. We analyzed the specimens of mid-distal sciatic nerve, especially the morphological changes of the nerve, the different expression levels of S-100 protein and apoptosis-related proteins such as Bcl-2, Bax, and Fas in Schwann cells. The TUNEL method was used to detect the apoptotic rate of Schwann cells. RESULTS: (1) The test group showed Wallerian degeneration. The number of Schwann cells began to decrease at 24 h, obviously decreased on day 3 and 4, then began to increase from day 8 and formed Bungner belt after 14 days. (2) Schwann cells generally expressed S-100 at a low level in all groups. The control group was not significantly different from the normal group. The test group had statistical significance at 1 h and day 21. (3) As an inhibitory gene protein of Schwann cell apoptosis, Bcl-2 positive rates in the control and test groups apparently elevated and were statistically different from the normal group. (4) As a promotive gene protein of Schwann cell apoptosis, the control and test groups expressed Bax at a high level and were statistically different from the normal group. (5) As a promotive gene protein of Schwann cell apoptosis, Fas positive rate in control group was slightly elevated, but had no statistical significance compared with the normal group. Fas positive rate in test group continuously elevated in a fluctuant way, with highly statistical significance compared with the normal group. (6) TUNEL detection further proved that Schwann cell apoptosis rarely existed in the normal group, and the left sciatic nerve had no statistical significance compared with the right sciatic nerve. While the test group showed lots of apoptotic nuclei at 6 h, 2 d, 4 d, and 21 d. It had highly statistical significance compared with the normal group. CONCLUSIONS: Schwann cell apoptosis does exist in Wallerian-degenerated sciatic nerve of the rat after transection. Schwann cell apoptosis and its apoptotic genes expression have a time-related feature.
    [Abstract] [Full Text] [Related] [New Search]