These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prevention of myocardial reperfusion injury by poly(ADP-ribose) synthetase inhibitor, 3-aminobenzamide, in cardioplegic solution: in vitro study of isolated rat heart model. Author: Yamazaki K, Miwa S, Ueda K, Tanaka S, Toyokuni S, Unimonh O, Nishimura K, Komeda M. Journal: Eur J Cardiothorac Surg; 2004 Aug; 26(2):270-5. PubMed ID: 15296882. Abstract: OBJECTIVE: Cardioplegic arrest remains the method of choice for myocardial protection in cardiac surgery. Poly(adenosine 5'-diphosphate-ribose) synthetase (PARS) inhibitor has been suggested to attenuate the ischemia-reperfusion injury in myocardial infarction by preventing energy depletion associated with oxidative stress. We investigated the efficacy of a cardioplegic solution containing a PARS inhibitor, 3-aminobenzamide (3-AB), for myocardial protection against ischemia-reperfusion injury caused by cardioplegic arrest. METHODS: Isolated hearts were set on a Langendorff apparatus and perfused. The hearts were arrested for 90 min with a cardioplegic solution given at 30-min intervals and then reperfused for 20 min. The hearts of rat in the 3-AB(-) group (n = 8) were perfused with a standard cardioplegic solution and terminal warm cardoplegia, whereas the 3-AB(+) group (n = 8) received these solutions supplemented with 3-AB (100 microM). Left ventricular function and release of cardiac enzymes were monitored before and after cardioplegic arrest. After reperfusion, NAD+ (nicotinamide-adenine dinucleotide) levels were assessed, and the tissues were examined immunohistochemically for oxidative stress and apoptosis. RESULTS: During reperfusion, the 3-AB(+) group showed significantly higher (P = 0.005)dp/dt and lower creatine phosphokinase (CPK) level and glucotamic-oxaloacetic transaminase (GOT) in the effluent (CPK; P = 0.003 GOT; P < 0.001) The cardiomyocytes of the 3-AB(+) group also preserved a higher NAD+ level (P < 0.001). Immunohistochemical study of oxidative stress revealed a lesser extent (P = 0.007) of nuclear staining and a lower fraction of apoptosis in the 3-AB(+) group. CONCLUSION: Cardioplegic solution supplemented with 3-AB provides efficient myocardial protection in cardioplegic ischemic reperfusion by suppressing oxidative stress and overactivation of PARS.[Abstract] [Full Text] [Related] [New Search]