These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genomic analysis distinguishes Mycobacterium africanum.
    Author: Mostowy S, Onipede A, Gagneux S, Niemann S, Kremer K, Desmond EP, Kato-Maeda M, Behr M.
    Journal: J Clin Microbiol; 2004 Aug; 42(8):3594-9. PubMed ID: 15297503.
    Abstract:
    Mycobacterium africanum is thought to comprise a unique species within the Mycobacterium tuberculosis complex. M. africanum has traditionally been identified by phenotypic criteria, occupying an intermediate position between M. tuberculosis and M. bovis according to biochemical characteristics. Although M. africanum isolates present near-identical sequence homology to other species of the M. tuberculosis complex, several studies have uncovered large genomic regions variably deleted from certain M. africanum isolates. To further investigate the genomic characteristics of organisms characterized as M. africanum, the DNA content of 12 isolates was interrogated by using Affymetrix GeneChip. Analysis revealed genomic regions of M. tuberculosis deleted from all isolates of putative diagnostic and biological consequence. The distribution of deleted sequences suggests that M. africanum subtype II isolates are situated among strains of "modern" M. tuberculosis. In contrast, other M. africanum isolates (subtype I) constitute two distinct evolutionary branches within the M. tuberculosis complex. To test for an association between deleted sequences and biochemical attributes used for speciation, a phenotypically diverse panel of "M. africanum-like" isolates from Guinea-Bissau was tested for these deletions. These isolates clustered together within one of the M. africanum subtype I branches, irrespective of phenotype. These results indicate that convergent biochemical profiles can be independently obtained for M. tuberculosis complex members, challenging the traditional approach to M. tuberculosis complex speciation. Furthermore, the genomic results suggest a rational framework for defining M. africanum and provide tools to accurately assess its prevalence in clinical specimens.
    [Abstract] [Full Text] [Related] [New Search]