These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Benzo(a)pyrene diolepoxide (BPDE)-DNA adduct levels in leukocytes of smokers in relation to polymorphism of CYP1A1, GSTM1, GSTP1, GSTT1, and mEH. Author: Lodovici M, Luceri C, Guglielmi F, Bacci C, Akpan V, Fonnesu ML, Boddi V, Dolara P. Journal: Cancer Epidemiol Biomarkers Prev; 2004 Aug; 13(8):1342-8. PubMed ID: 15298956. Abstract: Benzo(a)pyrene [B(a)P] diolepoxide (BPDE)-DNA adducts were measured in the leukocytes of 41 healthy smokers using high-performance liquid chromatography coupled with a fluorimetric detector. The correlation between exposure to B(a)P through smoking and BPDE-DNA adduct levels was poor (r = 0.31), although subjects in the high exposure group [B(a)P > 50 ng/d] had a slightly higher level of adducts compared with the less exposed group (mean +/- SE, 1.70 +/- 0.3 versus 1.09 +/- 0.1; P = 0.057). We studied the effect on BPDE-DNA adducts of individual variations in genes controlling B(a)P metabolism, classifying subjects in "low-risk" and "high-risk" genotypes for smoking-related B(a)P DNA damage. The high-risk group included subjects characterized by a combination of increased B(a)P activation [cytochrome P450 1A1 (CYP1A1) MspI and/or exon 7 Ile462Val allele variants and microsomal epoxide hydrolase (mEH) fast activity] and decreased deactivation ability [presence of glutathione S-transferase M1 (GSTM1) null allele and wild-type glutathione S-transferase P1 (GSTP1)]. The low-risk group included smokers with lower B(a)P activation (wild-type CYP1A1, low or intermediate mEH activity) and higher deactivation capacity (active GSTM1, GSTP1 Ile105Val allele). Subjects in the low-risk group had lower levels of BPDE-DNA adducts compared with subjects in the high-risk genotype group; this difference was significant using two markers (CYP1A1 and GSTM1, median +/- SD, 0.77 +/- 1.16 versus 1.89 +/- 0.39; P = 0.03) or three markers (CYP1A1, GSTM1, and GSTP1, median +/- SD, 0.66 +/- 0.93 versus 1.43 +/- 1.17; P = 0.013). The discrimination between groups was reduced when including mEH as an additional marker (P = 0.085). In conclusion, CYP1A1, GSTM1, and GSTP1 genotyping seems to be a risk predictor of BPDE-DNA adduct formation in leukocytes.[Abstract] [Full Text] [Related] [New Search]