These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Formation of amyloid fibers triggered by phosphatidylserine-containing membranes.
    Author: Zhao H, Tuominen EK, Kinnunen PK.
    Journal: Biochemistry; 2004 Aug 17; 43(32):10302-7. PubMed ID: 15301528.
    Abstract:
    Protein misfolding has been shown to be the direct cause of a number of highly devastating diseases such as Alzheimer's disease, Parkinson's disease, and Creutzfeldt-Jacob syndrome, affecting the aging population globally. The deposition in tissues of amyloid fibrils is a characteristic of all these diseases, and the mechanisms by which these protein aggregates form continue to be intensively investigated. In only a fraction of cases is an underlying mutation responsible, and accordingly, what initiates amyloid formation in vivo is the major question that is addressed. In this study, we show that membranes containing phosphatidylserine (PS), a negatively charged phospholipid, induce a rapid formation of fibers by a variety of proteins, viz., lysozyme, insulin, glyceraldehyde-3-phosphate dehydrogenase, myoglobin, transthyretin, cytochrome c, histone H1, and alpha-lactalbumin. Congo red staining of these fibers yields the characteristic light green birefringence of amyloid, and fluorescent lipid tracers further reveal them to include phospholipids. Our results suggest that PS as well as other acidic phospholipids could provide the physiological low-pH environment on cellular membranes, enhancing protein fibril formation in vivo. Interestingly, all the proteins mentioned above either are cytotoxic or induce apoptosis. PS-protein interaction could be involved in the mechanism of cytotoxicity of the aggregated protein fibrils, perturbing membrane functions. Importantly, our results suggest that this process induced by acidic phospholipids may provide an unprecedented and generic connection between three current major areas of research: (i) mechanism(s) triggering amyloid formation, (ii) cytotoxicity of amyloidal protein aggregates, and (iii) mechanism(s) of action of cytotoxic proteins.
    [Abstract] [Full Text] [Related] [New Search]